Calculer la médiane et les quartiles d'une série statistique

-----------------------------------------------
Fiche
Tests
Sur une classe de 45 élèves, on effectue une enquête en demandant à chacun le nombre de livres lus le mois écoulé. On obtient les résultats suivants :
Nombre de livres
0
1
2
3
4
5
6
7
 
Effectif
3
8
12
10
6
3
1
2
45

Les quartiles de cette série statistique sont :
Cochez la bonne réponse.
Q_1 = 2 et Q_3 = 4
Q_1 = 1 et Q_3 = 3
Q_1 = 1 et Q_3 = 4
Score : .. /20
Commentaire
• On écrit la liste de toutes les valeurs de la série par ordre croissant, chacune d'elle répétée autant de fois que son effectif.
Ici, cela donne :
0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 6 7 7.
• On a \frac{n}{4} = \frac{{45}}{4} = 11,25 ; Q1 est donc le terme de rang 12 (rang immédiatement supérieur à 11,25) et Q3 est le terme de rang 34 (rang immédiatement supérieur à 3 \times 11,25 = 33,75).
D'où : Q_1 = 2 et Q_3 = 4.
------------------------------------------------------------
copyright © 2006-2020, rue des écoles